
AIAA 2001-4123

1
American Institute of Aeronautics and Astronautics

AN OBJECT-ORIENTED SENSOR AND SENSOR SYSTEM DESIGN

Jason R. Neuhaus
Senior Member

Aerospace/Software Engineer

Unisys Corporation
NASA Langley Research Center

Mail Stop 169
Hampton, VA 23681

Abstract*

This paper presents an Object-Oriented Design for
modeling sensors, and their associated errors and
failures. By applying Object-Oriented techniques to the
modeling of sensors, a generic sensor model and a
sensor system to manage the sensors were created.
Using this design, the process of adding new sensors at
any location on the aircraft, taking into account the
changes in dynamics at a point other than the center of
gravity, has been greatly simplified. This design also
includes a comprehensive set of methods for
implementing errors and failures that can be applied to
any sensor.

Introduction
The Object-Oriented1 Sensor and SensorSystem classes
were designed to provide a generic method for aircraft
simulations to model sensors and failures, as well as
provide a simplified way to obtain changes in sensor
inputs based on the location on the aircraft. The design
presented in this paper is currently used at NASA
Langley Research Center in the Langley Standard Real-
time Simulation in C++ (LaSRS++) framework. This
design allows any aircraft or vehicle in the LaSRS++
framework to easily create a sensor system to manage
sensors at specified locations and apply failures. The
interface provided by the sensor system, settings
available for each sensor, and large number of sensor
failure modes available allow aircraft to easily simulate
sensors with a large degree of flexibility.

The main classes used to implement this design include
a SensorSystem, Sensor, DynamicsAtPoint, and

Copyright © 2001 by the American Institute of
Aeronautics and Astronautics, Inc. No copyright is
asserted in the United States under Title 17, U.S. Code.
The U.S. Government has a royalty-free license to
exercise all rights under the copyright claimed herein
for Governmental purposes. All other rights are
reserved by the copyright owner.

FailureMode class. These classes are discussed in more
detail in the LaSRS++ Sensor Classes section below.

The SensorSystem class is the interface between the
aircraft and the sensors. It maintains a list of all sensors
for the aircraft, calculates the dynamics at the sensor
locations, and allows sensor failures to be activated.
Sensors are modeled using the Sensor class. The
location of the sensor may be specified so that effects
due to the location of the sensor relative to the center of
gravity may be simulated. The effects due to the
location of the sensors are calculated using the
DynamicsAtPoint class.

The Sensor class computes an output, the sensor signal,
based on an input signal, errors, and failures using
several internal methods. Available errors include a
scale factor, constant bias, random bias, and random
noise. The sensor can also implement a sampling rate
and can use a first and/or second order filter to model
the sensor behavior. The FailureMode class is used by
the sensor class to model sensor failures.

The FailureMode class allows the user to select from a
list of failure types that influence the sensor signal. The
failed output value is based on the selected failure type.

The DynamicsAtPoint class allows for the calculation
of position, orientation, velocity, angular velocity,
acceleration, and angular acceleration at a sample point
given the same values at a reference point and the
distance from the reference point to the sample point.

Through the use of the SensorSystem, Sensor,
DynamicsAtPoint, and FailureMode classes, this design
allows any aircraft or vehicle in the LaSRS++
framework to easily create a sensor system to manage
sensor models and sensor failures.

2
American Institute of Aeronautics and Astronautics

LaSRS++ Sensor Classes
The following classes were used in the LaSRS++
Sensor System implementation. The main classes
include DynamicsAtPoint, Sensor, FailureMode, and
SensorSystem. Some of the other classes mentioned in
the following sections, or in the Unified Modeling
Language (UML) diagrams 2 , are discussed in the
Miscellaneous Classes section. Figure 1 shows the
LaSRS++ Sensor System class overview.

DynamicsAtPoint
The DynamicsAtPoint class was created to allow for the
computation of vehicle dynamics at a point other than
the center of gravity; or any other point at which the
position, orientation, velocity, angular velocity,
acceleration, and angular acceleration are known.
Figure 2 shows the UML diagram for the
DynamicsAtPoint class. The class makes use of three
main points, a reference origin, reference point, and
sample point.

The reference origin is the origin point of the reference
frame. The reference origin for most aircraft is the
reference center of gravity. This origin point should
always be at a fixed point on the aircraft.

The reference point is the point at which the dynamic
inputs (velocity, acceleration, etc.) are known, typically
the center of gravity (CG). This point is specified

relative to the reference origin in the reference frame
coordinate system. The reference frame coordinate
system will typically be the body frame.

The sample point is the point at which the dynamic
inputs will be translated. It can be specified as a
distance from the reference origin or the reference point
in the reference frame coordinate system.

The equations, listed below, assume that the frame is
rigid, and therefore do not take into account rotations or
accelerations of the sample point frame relative to the
reference frame. The class allows the ability to specify
an extra coordinate frame rotation from the reference
frame to a frame used in the position calculation. This
has no affect on the calculation of the orientation,
velocity, acceleration, angular velocity, or the angular
acceleration at the sample point. This extra frame
rotation was added to allow the position calculation to
be used in a different frame than the other calculations.
For example, the position calculation is computed in
either world relative coordinates or relative to a
geographic reference point by the SensorSystem class.

For the LaSRS++ Sensor System, the reference origin is
located at the reference CG. The body frame is used as
the reference frame. The reference point is kept at the
CG and the sample point is fixed on a specified point
on the aircraft (discussed further in the SensorSystem
section).

Figure 1 Class Overview

()

on vectoracceleratiangular
on vectoraccelerati naltranslatioa

torlocity vecangular ve
vector velocity naltranslatiov

inputposition by the used frame
 the toframe reference thefrommatrix rotation R

n vectororientatio
ectorposition vx
frame coordinate

frame reference in thepoint sample
 thepoint to reference thefrom vector radiusr

epoint valu reference
epoint valu sample

:where

rraa

rvv

rRxx

rp

rs
r
s

rs
rsrrrsrrs

rs
rsrrs

rs

rsrprs

=α
=
=ω
=

=
=θ
=

=
=∗
=∗

α=α
×ω×ω+×α+=

ω=ω
×ω+=

θ=θ
⋅+=

SimulationModel
(from vehicles)

VehicleSystem
(from vehicles)

SensorSystem
(from navigation)

DynamicsAtPoint
(from vehicles)

1

0..*

1

-dynamics_at_points
0..*

FailureMode
(from fil ters)

Sensor
(from navigation)

1

0..*

1

-sensors
0..*

0..1

1..*

0..1

1..*

1

1

-failure
1

1

is a

is a

uses a

has ahas a association

ClassName
private attribute

public method()
protected method()
private method()

Legend

3
American Institute of Aeronautics and Astronautics

Sensor
The Sensor class is used to model a sensor and provides
a wide assortment of ways to model any associated
errors of a particular sensor. It outputs a sensor signal
as a function of an input value and any errors or failures
that are set. Available errors include a scale factor,
constant bias, random bias, and random noise. The
sensor can also have a sampling rate, failure modes, and
can use a first and/or second order filter to form the
sensor output. Figure 3 shows a UML diagram of the
Sensor class.

The scale factor introduces a scaling error. A constant
bias adds a constant, non-random bias to the sensor
signal. A random bias allows a mean, standard
deviation, and random number seed to be specified to
add a random (gaussian distribution) bias to the sensor
signal. A random noise allows a standard deviation,
lag, and random number seed to be specified. The
noise has a gaussian distribution with a zero mean and
has the standard deviation specified. The lag is used to
implement a first order Markov process to simulate the
noise spectrum for the sensor model.

The sampling rate can be used in order to update a
sensor slower than the simulation rate. The first and
second order filters can be used to create the desired
sensor model, introducing lag, phase shift, or oscillation
to the sensor input.

Sensor failures are implemented using the FailureMode
class.

FailureMode
The FailureMode class, shown in Figure 4, modifies an
output value based on a selected failure mode, if any.
There are nine basic failure types and six random
failure types. The basic failure types are no fail, fail
zero, fail frozen, fail high, fail low, fail reverse, fail
bias, fail cycle, and fail random. The random failure
types are random zero, constant interval zero, random
glitch, constant interval random glitch, constant interval
constant glitch, and constant random noise.

The no failure mode passes the input through without
any failure. Fail zero always returns zero as the output.
Fail frozen returns the previous output value. Fail high
returns the maximum value of the output. Likewise,

Figure 2 DynamicsAtPoint Class Diagram

Figure 3 Sensor Class Diagram

SimulationModel
(from vehicles)

FailureMode
(from fi l ters)

GaussRV
(from randomvariable)

Timer
(from timers)

StableFirstOrderFilter
(from fil ters)

Sensor

initial_input : double
added_noise : double
constant_bias : double
maximum_output : const double
minimum_output : const double
output : double
input : double
sample_interval : double
scale_factor : double
sensor_bias : double
sensor_output : double

Sensor()
Sensor()
initialize()
~Sensor()
update()
putInitialInput()
getInitialInput()
putSampleRate()
getSampleRate()
setFirstOrderFilter()
unsetFirstOrderFilter()
isFirstOrderFilterEnabled()
getFirstOrderFilterTau()
setSecondOrderFilter()
unsetSecondOrderFilter()
isSecondOrderFilterEnabled()
getSecondOrderFilterFrequencyAndDamping()
putConstantBias()
getConstantBias()
putScaleFactor()
getScaleFactor()
setRandomBias()
unsetRandomBias()
isRandomBiasEnabled()
getRandomBiasMean()
getRandomBiasDeviation()
getRandomBiasSeed()
setNoise()
unsetNoise()
isNoiseEnabled()
getNoiseDeviation()
getNoiseLag()
getNoiseSeed()
getFailureMode()
getFailureMode()
getOutput()
getInput()
getNoise()
getRandomBias()
putOutput()
putFirstOrderFilter()
operator =()

(from navigation)

1

1

1 -failure

1

1

0..1

1

-bias_reset
-noise

0..1

1

1

1

-sampling_timer

1

1

0..1

1

-markov_filter
-alias_filter_first_order

0..1

StableSecondOrderFilter
(from fil ters)

1

0..1

1 -alias_filter_second_order

0..1

(Vector<double>)
(from math)

RotationMatrix
(from math)

EulerAngles
(from math)

(Vector<AngularValue>)
(from math)

DynamicsAtPoint

is_sample_position_rel_ref_origin : bool

DynamicsSample()
DynamicsSample()
update()
~DynamicsSample()
getReferencePositionRelRefOrigin()
getSamplePositionRelRefOrigin()
getSamplePositionRelRefPoint()
getReferencePosition()
getReferenceOrientation()
getReferenceVelocity()
getReferenceAngularVelocity()
getReferenceAcceleration()
getReferenceAngularAcceleration()
getSamplePosition()
getSampleOrientation()
getSampleVelocity()
getSampleAngularVelocity()
getSampleAcceleration()
getSampleAngularAcceleration()
putReferencePositionRelRefOrigin()
putSamplePositionRelRefOrigin()
putSamplePositionRelRefPoint()
putReferenceToPositionFrameRotation()
putReferencePosition()
putReferenceOrientation()
putReferenceVelocity()
putReferenceAngularVelocity()
putReferenceAcceleration()
putReferenceAngularAcceleration()
operator =()

(from vehicles)

1

1

-reference_position_rel_ref_origin1

1

1

1

-sample_position_rel_ref_origin1

1

1

1

-sample_position_rel_ref_point

1

1

1

1

-reference_position

1

1

1

1

-reference_velocity

1

1

1

1
-reference_acceleration

1

1

1

1 -sample_position

1

1

1

1
-sample_velocity

1

1

1

1

-sample_acceleration

1

1

1

1

-reference_to_position frame

1

1

1

1

-reference_orientation

1

1

1

1

-sample_orientation

1

1

1
1 -reference_angular_velocity1
1

1
1

-reference_angular_acceleration
1

1
1

1

-sample_angular_velocity

1
1

1
1

-sample_angular_acceleration

1
1

4
American Institute of Aeronautics and Astronautics

fail low returns the minimum value of the output. Fail
reverse returns the input value with the sign changed.
Fail constant returns a user specified constant value.
Fail bias returns the input value plus a constant bias.
Fail cycle ramps the output constantly and limits the
output by rolling over from minimum to maximum or
visa versa. Fail random returns an output based on the
random failure types selected.

When the basic failure type is set to fail random, the
FailureMode class will base the output on the random
failure type selected. The random zero failure returns a
zero (dropout) at random time intervals. The constant
interval zero failure outputs zero at specified periodic
intervals. The random glitch failure outputs random
values at random intervals. The constant interval
random glitch failure outputs random values at
specified periodic intervals. The constant interval
constant glitch failure outputs a specified error value at
specified periodic intervals. The constant random noise
failure outputs random noise.

In addition to the failure modes and random failure
types, the user may specify a persistence time and
whether or not to ramp to the target value at a specified
ramp rate. The persistence time specifies how long the
output of a random failure is held while failing. The
ramp to target can be used to gradually ramp the output
value to the target value, dependent on the failure
mode, at a specified rate.

SensorSystem
The SensorSystem class, shown in Figure 5, keeps track
of sensors and sensor positions by using the Sensor and
DynamicsAtPoint classes. When constructed, the
SensorSystem class requires the number of sensors,
location of the reference center of gravity in the sensor
reference frame, and a rotation matrix from the sensor
reference frame to the body frame to be specified. The
sensor reference frame can be any frame, although for
most aircraft this will be either the Airplane Reference
System (ARS), specified by a Body Station, Butt Line,
and Water Line, or centered at the reference CG. The
reference CG is assumed to not move relative to the
aircraft during a simulation run.

Sensors are registered to the system through one of the
registration methods. These methods allow a sensor to
be registered with or without a position specified.

When a sensor is registered without a position using the
registerSensor() method, no DynamicsAtPoint instance
is created for it. Registration without a position is

typically done for a sensor that is at the same position
as another sensor, always located at the CG (unrealistic
as it may be), or if the sensor already computes an input
based on a position and does not wish the sensor system
to handle the position shift. Registration with a
position is done through the registerSensorAtPosition()
method.

Registering a sensor with a position, specified in the
sensor reference frame, allows the SensorSystem class
to compute the position, orientation, velocity, etc. at the
sensor location. An optional argument when registering
the sensor at a specified position allows a Geographic
Reference Relative Info Handle (GeoRefRelInfo-
Handle) to be specified. The GeoRefRelInfoHandle
class allows calculations to be done for the aircraft
relative to a fixed point on the ground, such as a

Figure 4 FailureMode Class Diagram

UniformRV
(from randomvariable)

Timer
(from timers)

FailureMode

output : double
output_past : double
minimum_output : double
maximum_output : double
bias : double
constant_error_value : double
fail_low_value : double
fail_high_value : double
ramp_rate : double
ramp_increment : double
cycle_rate : double
constant_time_interval : double
time_interval : double
error_persistance_time : double

FailureMode()
FailureMode()
update()
~FailureMode()
getBias()
getConstantErrorValue()
getConstantTimeInterval()
getCycleRate()
getErrorPersistanceTime()
getFailHighValue()
getFailLowValue()
getRampRate()
getOutput()
getTimeInterval()
getUseRampToTarget()
getRandomFailureType()
getFailureSwitch()
getMaximumTimeBetweenErrors()
getMinimumTimeBetweenErrors()
getSeedTimeBetweenErrors()
putBias()
putConstantErrorValue()
putConstantTimeInterval()
putCycleRate()
putErrorPersistanceTime()
putFailHighValue()
putFailLowValue()
putRampRate()
setUseRampToTarget()
putRandomFailureType()
putFailureSwitch()
resetRandomTimeBetweenErrors()
setRandomFailureMode()
resetTimeInterval()
randomFailureOutput()
generateRandomErrorOutput()
failRampOutput()
failCycleOutput()
operator =()

(from fil ters)

1

1

-uniform_random_output

1

1

1

1

-uniform_random_interval

1

1

1

1

-cycle_timer

1

1

5
American Institute of Aeronautics and Astronautics

navigation transmitter or runway threshold. The sensor
must also specify whether or not the velocity computed
is air-relative, to include wind velocity, or body
relative.

If two sensors are located at the same position, the
linkSensors() method can be used to ensure the
dynamics calculated for one sensor are the same for all
sensors that are linked to it. Linking sensors is done to
save some computation time by only updating one
DynamicsAtPoint instance for each sensor location on
the aircraft, instead of updating one for each physical
sensor.

The update() method is used to update all of the
DynamicsAtPoint instances for the sensor position
specified. The values computed at the sample points
are then used to calculate the inputs to the individual
sensors.

The SensorSystem updates the individual DynamicsAt-
Point instances differently if a GeoRefRelInfoHandle
was specified for the corresponding sensor during
registration. If the handle was specified, the reference
point position is calculated relative to the geographic
reference point, otherwise the position is calculated in
world relative coordinates. The SensorSystem class
provides a method for computing the latitude,
longitude, and altitude of a point given in world relative
coordinates using the same world shape data as the
simulation. The orientation is input as the local frame
to body if a GeoRefRelInfoHandle was specified,
otherwise the orientation is input as the rotation angles
from local vertical to body.

None of the other reference point inputs to the
DynamicsAtPoint instances are dependent on whether
or not a geographic handle was provided. Air relative
velocities or body velocities are input for the velocity
input based on whether the sensor specified that it
wanted air relative velocities or not when it was
registered. The inertial acceleration of the aircraft in
body coordinates minus gravitational effects is used as
the acceleration input. The body angular velocity and
angular acceleration are used for the angular velocity
and angular acceleration inputs. The position of the
reference point is updated based on the current location
of the CG relative to the reference CG.

Once all of the DynamicsAtPoint instances have been
calculated, the calculateSensorInputs() method is
called. This method allows the aircraft specific sensor
system to calculate the inputs to the sensors based on

the dynamics that have been calculated at the sensor
locations. For example, an alpha (angle of attack)
sensor would use the body x and z components of the
air-relative velocity at the sensor location to compute
the local angle of attack. A Global Positioning System
(GPS) receiver would use the world relative position
calculated, when registered without a geographic
handle, to compute the latitude, longitude and altitude
at the sensor location. A glideslope receiver would use
the position relative to the transmitter, by using the
transmitter as the geographic handle when registered, to
compute the glideslope angle as seen by the receiver.

Miscellaneous Classes
This section discusses some of the classes that are used
by the sensor system design, but are not otherwise
described in this document.

The SimulationModel class is the base class for all
models in the simulation. Its main purpose is to
standardize the way models initialize and to allow
access to a simulation mode and timer.

The simulation mode is used to determine what state
the simulation is in. These states include reset, trim,
hold, and operate.

The simulation timer is implemented with the Timer
class. The Timer class is used for various timing

Figure 5 SensorSystem Class Diagram

VehicleSystem
(from vehicles)

GeoRefRelInfoHandle
(from navigation)

Aircraft
(from vehicles)

(Vector<double>)
(from math)

RotationMatrix
(from math)

DynamicsAtPoint
(from vehicles)

Sensor
(from navigation)

GeodeticCoordinates
(from environment)

SensorSystem

sensor_inputs : vector<double>
sensors_links : vector<int>
use_air_relative_vel : vector<bool>

SensorSystem()
SensorSystem()
SensorSystem()
initialize()
~SensorSystem()
update()
getSensor()
getSensor()
getSensorDynamics()
getSensorDynamics()
getSensorInput()
getSensorOutput()
getNumberOfSensors()
calculateSensorInputs()
putGeoRefRelInfoHandle()
computeLatLongAlt()
linkSensors()
registerSensor()
registerSensorAtPosition()
operator =()

(from navigation)

0..*

1

-geo_reference_rel_info0..*

1

0..*

1

-sample_positions_rel_ref_cg

0..*

1

0..1

1

-aircraft0..1

1

1

1

-reference_cg_rel_sensor_ref
1

1

1

1

-sensor_ref_to_body
1

1

0..*

1

-dynamics_at_points

0..*

1

0..*
1

-sensors

0..*
1

1

1

-geodetic_coordinates
1

1

6
American Institute of Aeronautics and Astronautics

functions. It is often used when a class needs to keep a
separate timer from the main simulation timer.

The VehicleSystem classes manage communications
between an aircraft and the simulation models of its
components. They are responsible for calculating and
passing the expected inputs into the simulated
components. They are also responsible for retrieving
output from the component and manipulating it into the
data that the aircraft expects. For example, the
ControlSystem class derives from VehicleSystem. The
control system gets sensor outputs from the sensor
system (another class that derives from VehicleSystem)
and passes them to a control law.

The Aircraft class is the aircraft object being simulated.

The Vector<double> template class is simply a three
element array of doubles.

The Vector<AngularValue> template class is similar to
the Vector<double> template class, but contains an
array of angular values. Angular values are doubles
that contain information about an angle and can return
their value in either degrees or radians.

The EulerAngles class is a storage class for standard
Euler angle orientations

The RotationMatrix class is used to perform coordinate
rotations between different coordinate frames.

The GaussRV class is used to generate random values
in a Gaussian distribution. The class allows a seed,
mean, and standard deviation to be defined.

The UniformRV class is used to generate random
values in a uniform distribution. The class allows a
seed, minimum, and maximum value to be defined.

The StableFirstOrderFilter class implements a first
order filter with additional checking to make sure the
digital, z-transform, implementation of the filter is
stable. If the time step is greater than 2τ, where τ is the
filter time constant, the digital implementation of the
filter is unstable. If the filter is unstable the filter will
always return the steady state output for the filter.

The StableSecondOrderFilter class is similar to the
StableFirstOrderFilter class except it implements a
second order filter.

The GeodeticCoordinates class is used to specify
positions relative to a reference ellipsoid as coordinates
of latitude, longitude, and altitude.

The GeoRefRelInfoHandle class provides calculations
and accessors for individually selectable position,
velocity, and acceleration data of an aircraft relative to
a geographic reference point (GeoRefPoint), for
example, a navigation transmitter or runway threshold.

Results
In this section, example sensor placement and sensor
errors are demonstrated. Figure 6 through Figure 10
show the dynamics of the aircraft at the CG for the 10
second run.

GPS Receiver
In this example, a GPS receiver is placed 50 feet
forward and 20 feet up from the reference CG. Figure
11 through Figure 13 show the latitude, longitude, and
altitude of the center of gravity versus the sensor
position. This example includes no sensor errors or
dynamics.

The GPS sensor outputs are affected only by the
orientation of the aircraft and the latitude, longitude,
and altitude of the CG. The aircraft begins heading
north at 10,000 feet. During the 10 second run, the
difference in latitude remains small, with the sensor
remaining slightly north of the CG (Figure 14). The
minimum difference between the sensor and CG
latitudes occurs around 5 seconds when the pitch and
yaw are at their maximum values, and the aircraft is
rolled somewhat.

The longitude remains the same until shortly after 2
seconds when the aircraft heading changes (Figure 15).
As the aircraft starts to turn east, the sensor reads a
longitude slightly east of the CG.

The sensor altitude changes between approximately 25
and 38 feet higher than the CG throughout the run
(Figure 16). The primary contribution to the change in
altitude is the pitch angle, with the roll angle having a
smaller adverse affect on the relative altitude.

Accelerometer
In this example, an accelerometer triad is placed 80 feet
forward and 2 feet down from the reference CG. Figure
17 through Figure 19 show the sensed accelerations at
the center of gravity versus the sensor position. This
example includes no sensor errors or dynamics.

7
American Institute of Aeronautics and Astronautics

)xr(2 ⋅−

The body x axis accelerometer follows similar trends to
the acceleration at the CG (Figure 17). The difference
in the sensed acceleration between 2 and 4 seconds is
primary due to the yaw rate peak. The yaw rate term

adds an additional -2.5 foot per second
squared of acceleration at just past 3 seconds. At 5
seconds, a small spike appears because of a jump in the
body pitch acceleration.

The body y axis accelerometer is shown in Figure 18.
The primary effect on the side acceleration is due to the
large roll rates between 2 and 5 seconds.

The body z axis accelerometer is shown in Figure 19.
The difference between the sensed and CG
accelerations is due primarily to the pitch acceleration
and the product of the roll and yaw rates. The spikes in
acceleration at 1 and 5 seconds are primarily caused by
the pitch acceleration.

Alpha Sensor
In this example, an angle of attack sensor is placed 5
feet aft and 60 feet to the right of the reference CG.
Figure 20 shows the angle of attack at the CG, as well
as the computed angle of attack at the sensor position.
The angle of attack at the sensor position is calculated
based on the air-relative velocity components calculated
at the sensor position. This example includes no sensor
errors or dynamics.

The sensor output was obtained by calculating the angle
of attack using the body x and z axis velocities from an
instance of the DynamicsAtPoint class. The angle of
attack calculated at the sensor position was then passed
as the input to the sensor. The primary difference in the
angle of attack at the CG and the sensor position is
caused by the body roll rate.

Alpha Sensor with Errors and Model Dynamics
This example copies the example above (Alpha
Sensor), and adds a first order filter with a time
constant of 0.025 seconds, a constant bias of 0.2
degrees, and noise. The noise is modeled with a
standard deviation of 0.1 degrees, a lag of 0.03 seconds.

Figure 21 shows the difference in the sensor outputs
between the previous sensor output with and without
the errors listed above.

Alpha Sensor with Failures
This example duplicates the example above (Alpha
Sensor with Errors and Model Dynamics) plus the
implementation of some failures. The failures include a

fail high at 2 seconds, a fail frozen at 4 seconds, and a
fail random/random zero failure at 6 seconds. The fail
high and fail frozen failures each last 1 second. The fail
random is held until the end of the sampling period.
The sensor has a maximum value of 50 degrees, a
minimum of –10 degrees, ramp to target enabled with a
ramp rate of 20 degrees/sec, and an error persistence
time of 0.0125 seconds. The random time interval was
set to cause errors to repeat between 0.025 and 0.7
seconds.

Figure 22 shows the effects of adding the failures listed
above, and the errors from the previous example to the
alpha sensor output.

Conclusions
The Sensor and SensorSystem classes implemented in
the LaSRS++ framework provide a flexible framework
for the implementation of sensor models. Through the
use of the SensorSystem, Sensor, DynamicsAtPoint,
and FailureMode classes, the user has been given a
well-featured framework to model sensors. These
sensor models may be placed at any point on the
aircraft to include the effects of the position relative to
the center of gravity into the input of the sensor. The
sensor models have the added ability to implement
sensor dynamics, add errors to the sensor signal, and
fail the sensor.

Future Work
Additional features that could be useful to the sensor
system include the ability to remove the assumption
that the aircraft is a rigid body. This can be
accomplished by deriving a class from the Dynamics-
AtPoint class that can add in the effects of movement
and orientation changes of the sample point frame to
the calculations done in the DynamicsAtPoint class. In
this way, an angle of attack sensor could be added to a
wing flapping model to take into account the effects of
a non-rigid wing on the sensor reading.

References
1 Booch, Grady. Object-Oriented Analysis and Design
With Applications. The Benjamin/Cummings
Publishing Company, Inc., Redwood City, California,
1994.

2 Muller, Pierre-Alain. Instant UML. Wrox Press Ltd.
Chicago, Illinois, 1997.

8
American Institute of Aeronautics and Astronautics

Figure 6 Euler Angles

Figure 7 Velocity Components

Figure 8 Angular Velocities

Figure 9 Acceleration Components

Figure 10 Angular Acceleration

9
American Institute of Aeronautics and Astronautics

Figure 11 GPS Latitude

Figure 12 GPS Longitude

Figure 13 GPS Altitude

Figure 14 GPS Latitude Difference

Figure 15 GPS Longitude Difference

Figure 16 GPS Altitude Difference

10
American Institute of Aeronautics and Astronautics

Figure 17 X Accelerometer

Figure 18 Y Accelerometer

Figure 19 Z Accelerometer

Figure 20 Angle of Attack

Figure 21 Angle of Attack with Errors

Figure 22 Angle of Attack with Errors and Failures

	Abstract*
	Introduction
	LaSRS++ Sensor Classes
	DynamicsAtPoint
	Sensor
	FailureMode
	SensorSystem
	Miscellaneous Classes

	Results
	GPS Receiver
	Accelerometer
	Alpha Sensor
	Alpha Sensor with Errors and Model Dynamics
	Alpha Sensor with Failures

	Conclusions
	Future Work
	References

